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ABSTRACT

Annually and seasonally averaged wind profiles from three Doppler lidars were obtained from sites in the

Columbia River basin of east-central Oregon andWashington, a major region of wind-energy production, for

the Second Wind Forecast Improvement Project (WFIP2) experiment. The profile data are used to quantify

the spatial variability of wind flows in this area of complex terrain, to assess theHRRR–NCEPmodel’s ability

to capture spatial and temporal variability of wind profiles, and to evaluate model errors. Annually averaged

measured wind speed differences over the 70-km extent of the lidar measurements reached 1m s21 within the

wind-turbine rotor layer, and 2m s21 for 200–500mAGL. Stronger wind speeds in the lowest 500m occurred

at sites higher in elevation, farther from the river, and farther west—closer to the Cascade Mountain barrier.

Validating against the lidar data, the HRRR model underestimated strong wind speeds (.12m s21) and,

consequently, their frequency of occurrence, especially at the two lowest-elevation sites, producing annual

low biases in rotor-layer wind speed of 0.5m s21. TheRMSEbetweenmeasured andmodeledwinds at all sites

was about 3m s21 and did not degrade significantly with forecast lead time. The nature of themodel errors was

different for different seasons. Moreover, although the three sites were located in the same basin terrain, the

nature of the model errors was different at each site. Thus, if only one of the sites had been instrumented,

different conclusions would have been drawn as to the major sources of model error, depending on where the

measurements were made.

1. Introduction

Long-term mean profiles of the wind, those averaged

over seasonal, annual, or longer time periods, are im-

portant for many areas of meteorology. Two major ap-

plications are wind energy (WE) and the validation and

improvement of numerical weather prediction (NWP)

forecast models. Wind energy’s needs include, for

example, searching for suitable sites for wind plants

[resource assessment (RA)], characterization of flow

types, shear, and turbulence environments in pro-

spective locations, and operational forecasting for

existing wind plants (Schreck et al. 2008; Shaw et al. 2009;

Marquis et al. 2011; Ahlstrom et al. 2013; Banta et al.

2013a; Fernández-González et al. 2018). Many wind

farms are in complex terrain, complicating the acquisition

of spatially representative wind profiles. NWP forecast

model validation and improvement require accurate

long-term measurements of meteorological quantities

including wind, to get statistically reliable estimates of

model error and to characterize conditions when large

errors occur. These WE and NWP applications are

interrelated (Banta et al. 2018a): WE’s requirements

could be addressed by more accurate NWP models.

But the kinds of measurements now needed to validate

and improve model boundary layer physics, traditionally

cited as a major source of errors inmodels (Seaman 2000;
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Fernando and Weil 2010), are the same accurate profile

data as those needed today byWE to address its needs—

until such time as the more accurate, validated models

become available. Long-term measurements of mean

winds aloft have traditionally been a difficult problem.

Sources of vertical-profile measurements to address

these needs include tall towers (e.g., Drechsel et al. 2012;

Klaas et al. 2015; Fernández-González et al. 2018) and

ground-based remote sensing, such as Doppler lidar.

Doppler lidar can provide accurate profiles through a

deeper layer of the atmosphere than towers, they can be

easily moved, and they can be deployed in arrays to test

the horizontal representativeness issues. The scanning

or multibeam approaches to measuring the horizontal

wind give estimates that are averaged spatially, rather

than pointmeasurements, similar in some respects to the

spatially and temporally smoothed profiles provided by

NWP models.

The issue of spatial variability of long-term wind

profiles is important on many distance scales for both

WE and NWP improvement, yet little quantitative in-

formation from the atmosphere exists. Here we inves-

tigate lidar-measured wind profiles in complex terrain,

averaged over annual and seasonal time periods, at

three sites separated by a total distance of 71 km. Such

distances are relevant to decisions about where to site

wind plants, so understanding the skill of models at de-

termining wind speed spatial differences is important for

assessing their usefulness for RA. For operational wind

forecasting too, it is useful to understand the magnitude

of the variability of the wind resource over aWE region,

as well as the ability of models to simulate that vari-

ability. For model evaluation and improvement, it is

important to know whether site-to-site differences exist

in the nature of model errors and how representative

these errors are of a region.

In this study wind properties are measured through

the rotor layer and above by three scanning, pulsed

Doppler lidars, sited along the Columbia River basin

in eastern Oregon and Washington. These lidar lo-

cations are in the vicinity of several large wind farms,

and the measurements provide a measure of spatial

variability of winds over this region. Because of its

ability to measure mean-wind characteristics sub-

hourly at high precision (,10 cm s21) and resolution

(vertical spacing of 10m or less through the rotor

layer), Doppler lidar has become an increasingly

valuable technology for atmospheric studies (Banakh

et al. 2010; Pichugina et al. 2008, 2012, 2017a; Pichugina

and Banta 2010; Smalikho et al. 2013; Banta et al. 2013a,

2018a; Bonin et al. 2017) and model validation exer-

cises related to WE (Krishnamurthy et al. 2011; Mann

et al. 2017; Risan et al. 2018; Pichugina et al. 2017b;

Banta et al. 2018a; Fernández-González et al. 2018).

Here we use lidar wind profile measurements in the

basin over an 18-month period from two of the lidars

and a 12-month period for the third to document

these wind properties and their spatial and temporal

variabilities, to compare these measurements with

NWP output from the operational High-Resolution

Rapid Refresh (HRRR) model run at NOAA/NCEP,

and to evaluate several error statistics, such as bias and

root-mean-square error (RMSE), as vertical profiles,

time series, and functions of forecast lead time and

hour of the day.

The lidar deployments were part of a larger field

campaign, the Second Wind Forecast Improvement

Project (WFIP2) from September 2015 through March

2017. The experiment location, the Columbia River

basin, is not only the site of many large wind farms, but

is also a major source of WE for the western United

States. Overviews of theWFIP2 campaign describe the

experiment and scientific objectives (Shaw et al. 2019),

the instrumentation involved in the experiment, in-

cluding some preliminary research findings (Wilczak

et al. 2019), and the numerical forecast model ex-

periments that were an integral part of the program

(Olson et al. 2019).

A novel opportunity presented by this project is that a

validation dataset has been provided from an NWP

forecast model (HRRR) for which the dataset comprises

high-quality vertical profiles every 15min for the project

duration from Doppler lidars taken at three sites. This

triple deployment allows us to perform a comprehen-

sive, long-term evaluation of model skill as well as an

in-depth evaluation of the important issues of spatial

variability and representativeness of the results. With

the large dataset, we are able to separate the annual

findings into seasons, to investigate the effects of wind

direction, and to look at day-versus-night effects in a

quantitative manner.

Section 2 of this paper describes the location and

topography of the study region, focusing on the lidar

locations, lidar technical parameters, measurement

scanning sequence, and overall performance of each

lidar along with a short discussion of the HRRRmodel

used in this paper. Section 3 provides lidar-measured

distributions and mean-profile values of wind speed

and direction at each site for seasonal and annual time

scales. This section also provides analyses of wind

speed profiles averaged over westerly and easterly

wind directions as well as for daytime and nighttime

periods. Section 4 presents validation of the operational

HRRR model by Doppler-lidar measurements at the

three sites, and section 5 presents a brief summary and

conclusions.
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2. Study area, lidar locations, and HRRR model
properties

A map of the study area located east of the Cascade

Mountain Range is shown in Fig. 1a where orange

circles mark the three scanning Doppler-lidar sites

along the Columbia River valley. Synoptic-scale sys-

tems (often moving onshore from the Pacific Ocean),

the Cascade Mountains with several high-elevation

peaks, the Columbia River canyon, and local terrain

features as well as the presence of numerous wind

farms (Figs. 1a–c) all combine to create complex wind

flows over the study domain. The imposing Cascade

Mountain Range provides a natural barrier between

the Pacific marine air to the west and the arid conditions

over the wind-farm study area to the east (Figs. 1b,c).

Wind flow through the narrow Columbia River Gorge,

the only sea level gap through this range, has been

studied by Sharp and Mass (2002, 2004), who point out

that the gap winds are strongly controlled by the surface

pressure gradient. Higher pressure offshore to the west

of themountains produces westerly gap flow through the

Gorge, whereas higher pressure inland to the east gen-

erates easterly gap flow there.

a. Scanning Doppler lidars in WFIP2

Two scanning, pulsed Leosphere WindCube 200S

Doppler-lidar systems (200S hereinafter) were deployed

to sites near the Wasco and Arlington, Oregon, air-

ports that are 40 km apart, providing real-time mea-

surements from September 2015 to April 2017. The

third scanning Doppler lidar, a HALO Streamline XR

(HALO hereinafter), was deployed by the University

of Notre Dame to a site near Boardman, Oregon,

31 km east-northeast of Arlington (Fig. 2, top) and

was continuously operated from January through

December 2016. The westernmost lidar at Wasco docu-

mented an inflow profile upstream of the wind farms

during westerly flow, whereas wind profile shapes and

magnitudes at the middle lidar at Arlington and the

easternmost lidar at Boardmanmay be altered because of

distance from the Cascade Range, other terrain, and

upstream wind farms.

1) LIDAR SPECIFICATIONS

System parameters of these lidars are given in Table 1.

The lidars operated at pulse repetition rates of 10–20kHz,

averaged to 2-Hz beams (for the 200S lidars) or 1-Hz

FIG. 1. (a) Map of the study area in the Columbia River valley; the locations of scanning

Doppler lidars are denoted by gold circles. (b) A view of Mount Hood from Wasco County,

showing also wind turbines and the complex land surface. (c) Photograph (provided through

the courtesy of S. Wilson) of the Shepherds Flat Wind Farm in the area.
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beams (for HALO lidar), to provide range-resolved

measurements of the radial or ‘‘line of sight’’ (LOS)

velocity parallel to the beam ur, at a range resolution of

50 or 100m (Table 2) and an individual-beam instru-

mental precision of 20 cm s21.

2) SCANNING PROCEDURE

Lidar scan sequences were designed to measure sub-

hourly profiles of the mean wind at three individual sites.

For separation distances between lidars of more than

30km, coordinated, overlapping scanning among several

lidars as performed in projects such as Berg et al. (2015)

was not possible. Our measurement routine included a

15-min sequence of multiple azimuthal (conical) scans,

elevation (vertical slice) scans, and vertical staring of the

lidar beam (vertical stare mode, to measure the vertical-

velocity component w). Conical scans were performed at

several elevation angles to provide high-resolutionmean-

wind profiles from near the surface through and above

the atmospheric boundary layer. Elevation (vertical slice)

FIG. 2. (top) Google Earth (image credit: Landsat/Copernicus) map of the Eastern Gorge

portion of the study area, including the locations of two NOAA Doppler lidars (200S) at the

Wasco site at 452m above mean sea level (MSL) and the Arlington site at 262m MSL and the

University of Notre Dame HALO lidar at the Boardman site at 110m MSL. The lidar locations

are shownbywhite-outlined stars. Twowhite circles around each lidar indicatemeasurement area

up to 3 and 6 km. The white line indicates an ‘‘East–West’’ transect of the study region along

prevalent wind directions observed from surface measurements and models during previous

studies in this area (Sharp andMass 2002, 2004). The surrounding wind turbines are indicated by

the clusters of dark yellow circles. (bottom) Terrain elevation transect along this line.

TABLE 1. System parameters of Doppler lidars.

Lidar parameters

WindCube 200S

(50-m gate)

WindCube 200S

(100-m gate)

Halo Streamline XR

(100-m gate)

Wavelength (mm) 1.54 1.54 1.5

Pulse energy (mJ) 0.1 0.1 0.08

Pulse duration (ns) 200 400 350

Pulse repetition frequency (Hz) 20 000 10 000 10 000

Sampling frequency (MHz) 250 250 50

Accumulation time (s) 0.5/1 0.5/1 0.5/1

Range resolution (m) 50 100 48

Min range (km) 0.1 0.2

Typical max range (km) 3–5 5–7 3–5
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scans were performed at fixed azimuth by scanning from

the surface up to 308 elevation and back. These scans

were repeated approximately toward the north, west,

south, and east. For the last 3min of each 15-min se-

quence, the lidar pointed vertically (908 elevation).

Scan types and durations during each 15-min sequence

are presented in Table 2 and illustrated in Fig. 3a,b.

The scanning pattern, developed to meet lidar objec-

tives during WFIP2 was synchronously repeated by

each lidar every 15min.

Our lidar mean-wind profile calculation consists of

using the standard velocity–azimuth display (VAD)

procedure (Lhermitte and Atlas 1961; Browning and

Wexler 1968), modified to include all scans taken within

the 12-min averaging period (Banta et al. 2002, 2015);

vertically pointing data from the last 3min were ex-

cluded. Data combined from all conical scans (four or

five scans) and all four elevation (vertical-slice) scans

are binned according to height AGL. Each bin thus

represents a roughly disk-shaped horizontal layer con-

taining concentric rings of data from the conical scans

that intersect the layer plus four crossing lines of data

from the elevation scans. Each data point in a given bin

has an associated scan azimuth u and horizontal radial-

wind projection urh. Data in each bin, for all data points

from all scans, are used to calculate the mean horizon-

tal wind direction and speed using the modified VAD

technique, which consists of finding the best-fit sine

wave for the urh data as a function of u.

An automated quality assurance (QA) procedure

is then applied. First, data points suspected of second-

trip contamination were filtered out using the pro-

cedure as in Bonin and Brewer (2017). Then the

departure of the radial velocity from the mean-wind sine-

wave value for each point (residuals) was calculated

as a function of u, by subtracting the sine-wave value

from the original data. Outliers exceeding 3s, where s

is the standard deviation of the residuals, are removed

from the original sample. In a second QA pass, a new

mean-wind sine wave and new residuals are calculated,

and outliers of .3s are again removed to yield a final

sample. The mean winds used in this study were calcu-

lated from this final (u, urh) sample for each bin in the

vertical wind profile. This procedure removes spurious

hard-target returns, sharp turbulent bursts, significant

small-scale terrain effects, and other strong urh anoma-

lies that are unrelated to the mean flow. A final QA

step discards wind estimates if the standard deviation of

the mean of the residuals is larger than 0.25ms21 at that

particular level.

The result of this procedure is thus that in each layer

in the vertical, winds are averaged over a sampling disk,

which could be 10 km across, from scans that span a

12-min period. This averaging over time and space re-

sembles the smoothing inherent in NWP models, be-

cause, as is well known in NWP modeling and recently

recalled by Banta et al. (2018a, p. 1163), ‘‘numerical

and explicitly modeled diffusion ensure that model

variable fields are smooth enough to prevent numerical

instability.’’ That is, model gridpoint values represent a

smoothed average over several model grid intervals in

the horizontal, in the vertical, and in time, in a manner

that has not been well characterized. The smooth-

ing typically occurs over at least five grid intervals

(Skamarock 2004 found perceptible effects up to seven

intervals), which for HRRR would be 15 km. The

multiscan lidar method described here may thus be

the most appropriate measurement procedure currently

available to approximate the innate smoothing in NWP

model fields.

TABLE 2. Scan sequence continuously performed by lidars at three sites every 15min.

Scan type Elev (8) Azimuth (8) Duration (min) Comments

Wasco

Conical (PPI) 3 and 30 0–360 scanning 6.5 Loaner lidar until 4 Nov 2015

2.75, 6, 15, and 45 0–360 scanning 6.5 50-m gates until 21 Mar 2016

2.75, 4, 6, 15, and 45 0–360 scanning 8.5 100-m gates after 21 Mar 2016

Elev (RHI) 0–30 scanning 0, 90, 180, 270 3.5

Vertical stare 90 — 5 and 3

Arlington

Conical (PPI) 1.75, 6, 15, and 45 0–360 scanning 6.5 50-m gates until 24 Feb 2016

1.75, 3, 6, 15, and 45 0–360 scanning 8.5 100-m gates after 24 Feb 2016

Elev (RHI) 0–30 scanning 0, 90, 180, and 270 3.5

Vertical stare 90 — 5 and 3

Boardman

Conical (PPI) 1.75, 3, 6, 15, and 45 0–360 scanning 6.5

Elev (RHI) 0–30 scanning 0, 90, 180, and 270 3.5

Vertical stare 90 — 5
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Mean winds calculated from remote sensing scans

or multiple-beam measurements contain uncertainties

from various sources, such as meteorological (tur-

bulent eddies and other transient features), aerosol

loading [signal-to-noise ratio (SNR)1 is correlated with

measurement uncertainty], terrain complexity (validity

of homogenous-flow assumption), and others. Although

studies have expressed concern that horizontal-flow in-

homogeneities over individual scans may degrade the

accuracy of the mean wind calculated over the scan

footprint (Bingöl et al. 2009; Pauscher et al. 2016;

Mann et al. 2018), the results of interest in this study

involve averaging over several months to a year, which

comprise many thousands of profiles. Over those time

periods and large sample sizes, random small-scale

spatial-variability effects average out. In particular,

they will not contribute incorrectly to calculated model

errors, including biases.

This point was demonstrated in a complex-terrain

setting by Klaas et al. (2015), who compared profiling-

lidar and tall-tower data over an extended period to

obtain sample sizes of 7000–10 000. They found that the

long-term, lidar-tower differences (their Table 2: ‘‘mean

absolute error’’) were less than 0.10m s21 at each of four

vertical levels between 80 and 200mAGL. This estimate

is consistent with our own studies, using a formulation of

FIG. 3. (a) Illustration of lidar scanning sequence used during WFIP2, comprising several conical (PPI) scans,

performed at low (28, 38 or 48, and 68) and higher (158 and 458) elevation angles, and four vertical-slice (RHI) scans

performed at azimuth angles of 08, 908, 1808, and 2708. (b) Clockwise diagram of the 15-min lidar scanning pattern

that was synchronously repeated by each lidar. (c) Average diurnal behavior of themeasurement uncertainty over a

full year, showing a strong diurnal signature as well as dependence on terrain complexity for each site, shown

here as standard deviation of the terrain elevations (label SDE) within a 3-km radius of the instrument location

(Ascione et al. 2008).

1Wide-band SNR as used here is the same as the carrier-to-noise

(CNR) term used by the telecommunications industry.
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Newsom et al. (2017), modified by adding a term rep-

resenting SNR-weighted residuals of urh averaged over

the year, to obtain the wind speed precision based on

within-scan variability from all sources (Fig. 3c). These

quantities show a strong diurnal signature as well as

dependence on terrain complexity for each site. The

wind speed estimates have an average precision of better

than 0.02ms21 within the rotor layer, mainly because of

the large sample size of LOS measurements at each

height over the year, producing high confidence in the

mean-wind estimate. This magnitude of discrepancy,

and the 0.10m s21 found by Klaas et al. (2015), are not

enough to affect any of the site-to-site lidar annual dif-

ferences or annual model errors found in this study.

3) LIDAR-SCAN ADJUSTMENTS AND DATA

AVAILABILITY

During certain periods of WFIP2, low aerosol con-

centrations or other environmental factors led to low

lidar SNR and reduced lidar range, that is, the distance

out from the lidar of useful signal. This happened most

often in winter, when coastal storms could rain out

much of the particulate matter on the west side of the

Cascades. Stiff westerly flow through the Gorge would

then be cleansed of aerosol, at times resulting in lidar-

range reductions. These reduced-range periods caused

us to change our lidar settings and scan sequences (see

Table 2).

We used two approaches to improve the data quality.

First, we augmented vertical coverage by using a longer

pulse width and increased range-gate length (from 50 to

100m), thus enhancing SNR and lidar range. Along with

this, adjustments to the elevation angles of the conical

scans of the 200S lidars at Wasco and Arlington, as in-

dicated in Table 2, were necessary to maintain the re-

quired vertical resolution and coverage. Second, during

postprocessing, the profile data for the 200S lidars were

reprocessed to achieve greater coverage, using a new

NOAA lidar shifter spectral-processing technique (Bonin

et al. 2018), which extracts mean-wind profile data from

raw spectral data in low-SNR conditions, often extending

the lidar range and, consequently, the depth of coverage

significantly. Examples of the effectiveness of this tech-

nique are shown in the right panels of Fig. 4.

For the HALO lidar at Boardman, raw spectral

data were unavailable and therefore the NOAA-lidar

shifter technique could not be applied. However, the

vertical coverage of winds was improved by accepting

FIG. 4. Time–height cross sections of wind speed and wind direction at the (top) Wasco, (middle) Arlington, and

(bottom) Boardman sites for 18 Apr 2016, showing data (left) processed in real-time using the VAD technique and

(right) processed using a newly developed technique (‘‘shifter’’) to increase lidar-backscatter signal range

and vertical coverage (Bonin et al. 2018) and applying additional quality control procedures to the data from the

HALO lidar.
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lower-SNR data and weighting the data in the VAD fit

by an uncertainty factor determined from the Cramer–

Rao lower bound, a curve that relates the ur uncertainty

to SNR (Rye and Hardesty 1993).

Monthly availability of lidar measurements h at hub

height, estimated as the ratio of the number of obser-

vations at a given height NOBS to the expected (total)

number N of 15-min profiles in the diurnal cycle (h 5
100% 3 NOBS/N), is given in Table 3. Overall, all three

lidars performed better inMarch–September than in the

winter months, partly because of the weather conditions

as described (winter fog and precipitation; lower aerosol

loading) and partly because of technical lidar hardware

problems (e.g., malfunction and replacement of broken

lidar scanners resulting in missing data in October 2016

at the Arlington site and in November and December

2016 at Wasco). Decreases of lidar performance with

height, which invariably occur (Post et al. 1997; Banta

et al. 2013b, p. 473), were mostly due to a drop in SNR

resulting from the decrease of aerosol concentrations

with height.

All analyses presented in this paper are based on the

12-min averaged profiles of wind speed and direction,

which are available every 15min, as just described.

The QAed profile data were combined into daily

time–height cross sections to demonstrate how the

flows evolved on any given day, or were averaged to

form seasonal and annual statistics. Two examples of

individual-day time–height cross sections of the wind

speed are shown in Fig. 5 for 26 February and 28 June

2016, a wintertime and a summertime day, respectively.

The wind patterns on 26 February consisted of dimin-

ishing easterly gap flow due to a synoptic slackening

of the pressure gradient across the Cascades, and the

buildup of a cold-air-pool layer indicated by very weak

wind speeds, as noted previously by Whiteman et al.

(2001) and Zhong et al. (2001). The wind speed patterns

on 28 June reflect the summertime diurnal cycle of winds

due to daytime heating and nighttime cooling, which

were especially strong east of the Cascades, including

over the Columbia River basin (Banta et al. 2018b, 2019,

manuscript submitted to Mon. Wea. Rev.). These two

meteorological patterns occurred several times during

WFIP2 and are the subject of more in-depth studies of

cold-air pools (McCaffrey et al. 2019, manuscript sub-

mitted to J. Appl. Meteor. Climatol.) and summertime

diurnal westerly wind systems (Banta et al. 2019, man-

uscript submitted to Mon. Wea. Rev.).

b. HRRR–NCEP numerical weather prediction
forecast model

This study uses forecast output from the operational

HRRR as produced by NCEP during the WFIP2 field

campaign. TheHRRR is an hourly updated, convection-

allowing NWP model with 3-km horizontal grid spacing

that runs in a domain encompassing the continental

United States. It is used by many wind-industry fore-

casting vendors in formulating predictions of turbine-

height winds.

Since only a few studies have validated forecasts of

wind profiles, one objective of this study is to quantify

the skill of the HRRR model in predicting low-level

(the first 500m AGL) winds across different seasons.

Moreover, in conjunction with—and informed by—the

WFIP2 field campaign, a WFIP2 model-development

effort was undertaken to improve the physical parame-

terizations in HRRR (Olson et al. 2019). Thus, a second

objective of this study is to quantify HRRR forecast

errors as a baseline against which the performance of

future (upgraded) HRRR versions can be assessed.

The operational HRRR model analyzed in this study

was upgraded on 23 August 2016, and this upgrade in-

cluded changes to data-assimilation and model-physics

components. With the exception of this upgrade, the

HRRR model forecasts in this study were produced by a

static (or ‘‘frozen’’) HRRRconfiguration. Benjamin et al.

(2016) give a comprehensive description of the Rapid

Refresh (RAP) andHRRRoperational models. For data

assimilation, both models use the NOAA Gridpoint

Statistical Interpolation analysis system (Benjamin et al.

TABLE 3. Availability (%) of lidarmeasurements of wind speed at 100mAGL and the number ofmeasurement days during eachmonth of

2016. An asterisk indicates that the lidar was offline because of scanner replacement during the month.

Site Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Availability of measurements

Wasco 59 65 73 99 99 98 98 100 96 89 45 10*

Arlington 69 61 94 100 75 99 99 100 96 3* 65 54

Boardman 70 75 76 83 92 96 98 100 98 87 90 83

No. of measurement days

Wasco 29 26 31 30 31 30 31 25 30 25 11* 4*

Arlington 30 27 31 30 24 30 31 25 30 3* 20 19

Boardman 27 29 29 26 29 30 31 25 30 23 24 23
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2016, and references therein) with enhancements for

hourly assimilation of data from a variety of sources, in-

cluding surface sites, rawinsonde, radar, satellite, and

onboard aircraft sensors (see Table 4 of Benjamin et al.

2016). One difference between the RAP and HRRR ini-

tialization procedure is in the post-data-assimilation re-

balancing of the atmospheric state. TheRAPuses a digital

filter initialization (DFI; Peckham et al. 2016) to improve

the balance of the initial condition andminimize the noise

caused by gravity waves generated during the adjust-

ment process. The current operational HRRR does not

employ DFI after the data-assimilation process. Con-

sequently, spurious gravity waves can produce artificial

mixing, which can erode stable layers and potentially

impact low-level winds. This problem was discovered

during WFIP2, prompting the likelihood of adding DFI

to theHRRR initialization procedure in future versions.

HRRR gridpoint values were available at the top of

each hour. Doppler-lidar measurements were averaged

for the 15-min value before and after the hour to provide

an hourly dataset. The model grid values were interpo-

lated bilinearly in the horizontal to the location of each

lidar. This smoothing acts to reduce any phase or lag

effects, and the long-term averaging performed in this

study should also mitigate these effects.

The performance of NWP models has been evalu-

ated using remote sensing measurements above the

surface from various instruments during several short-

term (mostly monthlong duration or less) field experi-

ments (e.g., Zhong and Fast 2003; Fast and Darby 2004;

Yang et al. 2017; Wilczak et al. 2015; Risan et al. 2018).

Longer-term model validations have been performed

using tall-tower measurements (Drechsel et al. 2012;

Draxl et al. 2014; Krogsæter and Reuder 2015; Klaas

et al. 2015; Fernández-González et al. 2018) and rou-

tine rawinsonde (Benjamin et al. 2016). Recent studies

have validated simulated wind profiles from NOAA

operational NWP models against lidar-measured pro-

files in an offshore setting. Validation of NOAA

(RAP and HRRR) and NCEP [NAM Rapid Refresh

(NAMRR) and NAMRR continental U.S. (CONUS)

Nest] models were performed over the ocean off the

U.S. East Coast, using ship-based, motion-compen-

sated Doppler-lidar measurements (Pichugina et al.

2017b; Banta et al. 2018a). In general agreement with

the other studies, these studies also found wind speed

errors of 2–2.5m s21 in the lowest several 100m of the

atmosphere, with larger errors tending to occur during

nighttime hours, often in the presence of low-level

jets (LLJs).

FIG. 5. Time–height cross sections of wind speed and wind direction at the (top) Wasco, (middle) Arlington, and

(bottom) Boardman sites during (left) 26 Feb and (right) 28 Jun 2016, illustrating vertical, diurnal, and spatial

(between sites) wind flow variability. Wind speed is color coded from 0 to 15m s21 according to the color scale.

Black arrows show wind direction. Two white horizontal lines on each panel indicate heights of 50–150m AGL.
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These studies, along with Djalalova et al. (2016) also

looked at the effects of model resolution by comparing

the 13-km RAP with the 3-km HRRR. At lead times of

less than 3h, the HRRR generally showed lower errors

than the RAP. But at lead times greater than 6h, the

coarser-resolution RAP often exhibited smaller errors

than HRRR, contrary to expectation. Thus, model res-

olution affects model-error properties, but often in un-

expectedways (Banta et al. 2018a).Unresolved variations

of terrain elevation, roughness, and other surface prop-

erties also exist and contribute in an unknown way to

model errors.

3. Wind flow properties and statistics measured by
Doppler lidar

a. Hub-height and rotor-layer distributions of wind
speed and wind direction

1) ANNUAL DISTRIBUTIONS

The mean 2016 annual distributions of wind speed in

the rotor layer at 50–150m (Fig. 6a) show the strongest

winds at Wasco, and weakest at the lowest site, Board-

man, where a large percentage of weak winds of 3m s21

or less produced a bimodal distribution to the wind

speeds, which can also be seen at Arlington. The single-

mode Weibull distribution often used for long-term

distributions in WE (Kelly et al. 2014) was thus not a

good fit for winds at these sites. Quantitatively, the

12-min wind speeds ranged from 0 to 20ms21 with mean

values of 7.1, 6.7, and 5.8m s21 at Wasco, Arlington, and

Boardman, respectively (Table 4).

Distributions of wind direction were not merely bi-

modal but nearly bidirectional, blowing from the west

or the east but seldom from any other directions, espe-

cially at Wasco and Arlington. Even though the terrain is

relatively open and basinlike in this area, the directional

dichotomy indicates strong topographical channeling of

the flow. The westerly and easterly flow directions had

respective mean values of 2728, 2618, and 2508 and 918,
718, and 718 at each site, where westerly flow by far

dominated easterly for wind speeds greater than 4ms21

(Table 5).

The standard deviation s of the wind directions2 for

westerly-component flow (Table 4) was only ;208 at

Wasco and Arlington and 308 at Boardman, indicating a

narrow range. It is shown in Fig. 6b that these annual

distributions were dominated by the statistics of the

more frequent westerly flows. The speed distributions

for the subsample of only westerly winds are also dis-

tinctly bimodal, especially at Arlington and Boardman

(see Fig. 11, described in more detail below, for evi-

dence). Thus, even for this narrow westerly sector, the

Weibull distribution was not a good fit. Results were

similar for the experiment-long (September 2015–

March 2017) distributions from lidars at the Wasco and

Arlington sites (Fig. A1, in the appendix). The westerly–

easterly flow-direction dichotomy found by Sharp and

Mass (2002, 2004) within theGorge is thus shown here to

extend well to the east into the Columbia Valley, at least

as far as the site at Boardman (Fig. 2).

Annual distributions of 100-m wind speed as a func-

tion of wind direction are shown in Fig. 6b, where ob-

served winds are categorized into three groups (0–4,

4–12, and 12–25ms21) approximating those relevant to

wind-turbine operations. The isolation of westerly

versus easterly winds is obvious in these distributions.

The differences in behavior between these two groups

give insight into their relevance to WE and NWP im-

provement, so we will show their attributes separately

as part of the analyses. We will also show daytime

versus nighttime differences, to highlight the differ-

ences in effect between unstable and stable boundary

layer physics.

FIG. 6. (a) Annual distributions of rotor-layer wind speed and

direction at the Wasco (red), Arlington (blue), and Boardman

(goldenrod) sites. (b) Annual distribution of rotor-layer wind

speed at each site, plotted as a function of wind direction. Colors

indicate three wind speed categories as specified in the legend at

the top of the leftmost panel.

2 Because of the complete separation in the distributions of

westerly and easterly flow directions, implying no 08 vs 3608
ambiguities for either sample, we calculated a simple linear

standard deviation for each westerly and easterly distribution of

wind directions.
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Westerly winds were more frequent than easterly in

each wind speed category at all three sites (Fig. 6b,

Table 5), and winds stronger than 12m s21 were almost

exclusively from the west. The most frequent cate-

gory was westerly winds of 4–12m s21 (57%, 55%, and

45%), and the least frequent, the strong 12–25m s21

easterly wind.Wind speeds stronger than 25m s21 from

any direction were observed rarely, with only 11 (5)

cases recorded at the Wasco (Arlington) site. This very

small percentage of cases is negligible in the distribu-

tions, and winds stronger than 25m s21 have not been

represented in Fig. 6b or Table 4.

2) SEASONAL DISTRIBUTIONS

Distributions of rotor-layer (50–150m) wind speed

and direction have been separated into seasons in

Fig. 7, which shows stronger winds during summer

months compared with winter (Table 6). Westerly wind

directions were more frequent for spring, summer, and

fall because of the seasonal tendency for offshore ridging,

whereas during the winter season the occurrences of

westerlies and easterlies were comparatively more equal.

The increased occurrence of easterlies and weaker winds

in winter resulted from frequent near-stagnant condi-

tions beneath basin cold-air pools and frequent high

pressure inland, as previously described. Boardman had a

high percentage of weak winds in all seasons, with dis-

tinct bimodal distributions for all seasons except winter,

when a large fraction of weakwind speeds formed a single

mode at 2ms21. This lower-elevation site farther from

the Gorge opening thus had a less favorable wind speed

distribution for WE generation than the other two sites.

b. Vertical structure of wind flow—Mean profiles

1) ANNUAL

Figure 8 shows the annually averaged wind speed

profiles at the three sites for all wind directions, and then

for only the westerly wind and only easterly occurrences.

Within each panel, the profiles are further divided into

averages for approximate nighttime (0000–1200 UTC)

and daytime (1200–0000 UTC) hours. The mean profiles

for easterly flow indicate the strongest winds at Wasco,

but these speeds at all sites varied little with height be-

tween 100 and 500m. Among the three sites the easterly

profiles differed by less than 1ms21, with speeds of

3–4ms21 (daytime) and 4–5ms21 (nighttime).

For westerly flow, which also dominated the ‘‘All

data’’ statistics by virtue of its greater frequency of

occurrence, the westernmost Wasco site had the stron-

gest winds, and easternmost Boardman, the weakest.

The nighttime wind profile at Wasco was as much as

2m s21 stronger than Arlington, which was up to

1–2ms21 stronger than Boardman. The weaker daytime

profiles showed a similar site-to-site trend but smaller

differences. Westerly flow means reached 5m s21

stronger than those for easterly winds, and nighttime

winds were stronger on average than daytime in all

cases. LLJ structure was evident in the mean night-

time westerly profiles at Wasco and Boardman, as a

TABLE 4. Annual mean and s values of wind speed (m s21) and wind direction (8) distributions from 15-min lidar measurements.

All East West East West

Speed s Speed s Speed s Direction s Direction s

Annual 2016 for 50–150m

Wasco 7.1 4.3 4.5 3.1 8.0 4.2 91 28 272 20

Arlington 6.7 4.3 3.9 2.8 7.5 4.3 71 34 261 19

Boardman 5.8 4.2 3.1 2.2 7.0 4.3 71 45 250 30

Annual 2016 for 0–1000m

Wasco 8.1 5.4 5.8 4.9 9.1 5.3 92 36 269 27

Arlington 7.6 5.3 5.2 4.8 8.6 5.1 76 39 259 24

Boardman 5.8 4.6 3.7 2.7 6.8 5.0 74 48 252 35

TABLE 5. Annual frequency of 100-m wind speed occurrence (%) in each wind speed category for all wind directions, and how each

category is divided between easterly and westerly wind directions (%of all occurrences in the category). The last column shows the annual

frequency NN (%) of winds above the cut-in speed (4m s21) and available for power generation at the location of the lidars.

0–4m s21 4–12m s21 12–25m s21

NN %

three groupsAll East West All East West All East West

Wasco 31 46 54 57 26 74 12 0.5 99.5 69

Arlington 33 49 51 55 20 80 12 0.8 99.2 67

Boardman 46 50 50 45 19 81 9 0.4 99.6 54
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result of gap flows in winter and nocturnal marine

intrusions in summer, flows that were typically less

than 600m deep.

Averaging over annual periods (as here) produces

smoothed wind speed profiles but large natural vari-

ability. The annual wind speed standard deviations

were ;4–5m s21 for westerly and ;2–3m s21 (4m s21

at Boardman) for easterly winds (Table 4), with little

difference in standard deviation between daytime and

nighttime hours for both wind directions (not shown).

Standard deviation values such as these can be useful

for verification of distribution parameters, such as the

Weibull shape parameter (e.g., Kelly et al. 2014).

2) SEASONAL

Seasonally averaged profiles for westerly and east-

erly component wind speeds are shown in Fig. 9. Be-

low ;400m the smallest west-versus-east differences

are seen in winter, because of the frequent cold-air

pools and inversion layers. Wind speeds under these

conditions tended to be weak, and directions, highly

variable, with a higher frequency of easterly winds

FIG. 7. Seasonal distributions of rotor-layer wind speed and direction at three sites (color key).

TABLE 6. Seasonal mean and s values of wind speed (m s21) and wind direction (8) distributions from 15-min lidar measurements.

All East West East West

Speed s Speed s Speed Speed s Speed s

Winter 2016 50–150m

Wasco 5.5 4.4 4.8 4.0 6.1 4.6 93 25 263 29

Arlington 5.3 4.4 4.1 3.6 6.2 4.7 68 30 258 23

Boardman 4.2 3.7 3.0 2.2 5.2 4.3 67 45 251 39

Spring 2016 50–150m

Wasco 7.5 4.2 4.8 2.6 8.4 4.3 85 29 271 21

Arlington 7.1 4.5 4.2 2.7 8.2 4.6 63 30 260 19

Boardman 6.5 4.4 3.5 2.3 7.7 4.5 63 38 253 31

Summer 2016 50–150m

Wasco 8.1 4.1 4.3 2.1 8.6 4.0 78 24 275 15

Arlington 7.5 4.2 3.8 2.2 8.3 4.0 66 28 263 15

Boardman 6.6 4.2 2.9 1.7 7.9 4.0 82 42 242 24

Autumn 2016 50–150m

Wasco 5.8 3.6 3.9 2.3 6.6 3.7 93 30 267 25

Arlington 6.1 3.8 3.5 2.8 8.9 3.7 69 34 260 21

Boardman 5.4 3.9 3.2 26 6.4 4.0 61 43 250 33
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than in summer. The largest discrepancies between

westerly and easterly flows happened in summer. The

LLJ structure in the nocturnal westerly mean profiles

seen in the annual profiles atWasco and Boardman was

most pronounced in spring and summer, reflecting the

more frequent occurrences of marine intrusions and

gap flows during those seasons.

4. HRRR model validation versus Doppler
lidar at three sites

High-resolution lidar measurements are a valuable

resource for NWPmodel-profile validation. To illustrate

the nature of the data and HRRR model information

being used, Fig. 10 shows lidar time–height cross sec-

tions for the three sites for the two individual days of

Fig. 5, 26 February and 28 June, along with the corre-

sponding HRRR model cross sections for forecast lead-

time hours 1 and 3. The bottom rows show time–height

cross sections of the model-minus-lidar wind speed dif-

ferences (model bias errors) from which model error

statistics presented here were calculated.

Cross sections such as Fig. 10 provide insight into the

nature of the flows and associated model errors on indi-

vidual days. For example, for 26 February, the diminishing

of the easterly wintertime gap flow and the buildup of

the weak-wind layer at Arlington and Boardman as

noted in Fig. 5 were simulated by the model, but at

Wasco the stronger winds persisted in the model after

0600 UTC, indicating that the top of the weak-wind

layer was predicted to be below the elevation ofWasco

during this period (Fig. 10, left panels). The timing of

the wind down-ramp and the vertical structure of the

departing westerlies were major sources of model er-

ror through the lowest km. In the other example, the

diurnal-wind cycle on 28 June (Fig. 10, right panels) was

captured by the model, but the model timing of onset

and the inability of the model to maintain the observed

strong winds below 400m AGL after 0600 UTC were

sources of error on this day. Banta et al. (2018b, 2019,

manuscript submitted toMon. Wea. Rev.) show that this

error pattern is typical for this type of wind flow.

a. Model wind speed distributions

Annual distributions of wind speed from HRRR–

NCEP and lidar measurements at a height of 100m,

close to the hub height of many currently used wind

turbines, are shown in the top three rows of Fig. 11

for the three sites. These plots address an important

question for the RA aspect ofWE, namely, howwell do

FIG. 8. Annually averaged wind speed profiles for (left) all data, (center left) all data seg-

regated by day vs night, (center right) westerly wind directions, and (right) easterly wind di-

rections. The vertical axis for the top panels is shown for a linear height scale from 0 to 500m; in

the bottom panels, heights are shown in a logarithmic scale from 0 to 200 m. Data are

shown for lidar measurements at the Wasco (W; red), Arlington (A; blue), and Boardman

(B; goldenrod) sites during 1 Jan–31 Dec 2016. In the day-vs-night panels, solid lines

represent data averaged over nighttime (0000–1200 UTC) hours and dotted lines represent

daytime (1200–0000 UTC) hours.
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models predict the annual distribution of wind speeds,

from which the projected annual energy production

(AEP) is calculated. The HRRR plots show wind speeds

from the 3-h forecast model output in blue superimposed

on the red lidar-measured distributions at the three sites.

The models captured the general shape of the annual

wind speed distributions (Fig. 11, top left panels), in-

cluding the bimodal distribution shapes at Boardman and

Arlington, but underpredicted the occurrence of strong

winds greater than 12ms21 at the three sites. The bi-

directional wind direction distribution was represented in

the model for all sites; this was true for all forecast hours.

Both modeled and measured westerly winds (Fig. 11, top

right panels) were stronger and were over a broader

range (0–18ms21) than the easterly winds, which were

distributed over a range of 0–12m s21 at all three sites.

Site-to-site differences in model performance are most

apparent as underpredictions of strong winds being

largest at Arlington, underpredictions of the occurrence

of weak (,4m s21) winds being largest atWasco (mostly

because of the winter season; Fig. 11, bottom panels),

and overpredictions of weak winds (,2m s21) being

largest at Boardman, also in winter.

Knowledge of the error in the hub-height wind

speed forecasts is of critical economic importance for

the calculation of energy produced by different types of

wind turbine. An example of power and AEP estimates

of a hypothetical wind turbine are shown in Table 7. The

power at each site was calculated using frequency distri-

butions of measured andHRRR-simulated wind speeds at

80 and 100m, and the reported power curve of a 1.5-MW

General Electric (GE) wind turbine (GE Energy 2009),

selected as one of the most widely deployed utility-scale

turbines worldwide and in the study area.

See the appendix for annual distributions of com-

puted power at the three sites (shown in Fig. A2). The

last column in Table 7 shows normalized difference (%)

between measured and modeled variables. The 100-m

modeled wind speeds were too weak by 5.7%, 15%, and

17% at Wasco, Arlington, and Boardman, respectively,

with similar values at 80m (not shown). Because the

model-lidar discrepancies can be significant over por-

tions of the power curve that are sensitive to wind speed,

the percentage power underpredictions can be larger

than those for wind speeds: here they were about 10%

too low at Wasco, 23% too low at Arlington, and 26%

too low at Boardman. At Wasco the 5.7% differences in

wind speed resulted from large HRRR overpredictions

in winter compensated by underpredictions the rest of

the year. The magnitudes were over such a range that

the calculated power underpredictions were only about

10%. Thus the average wind speed errors, and even

FIG. 9. Profiles of seasonally averaged wind speed in the first 500m AGL, shown for westerly

and easterly wind directions at three sites by lines and colors as in Fig. 8.
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more so the calculated AEP differences, depended

critically on the location of the measurement in this

complex-terrain setting, consistent with wind resource

studies at much larger scales over several decades—for

example, starting with Troen and Petersen (1989).

In the bottom three rows of Fig. 11 the distributions

are given for each season for forecast hour 3. The un-

derpredictions of strong winds seen in the annual dis-

tributions are shown to be mostly warm-season effects,

the largest discrepancies occurring in summer. The un-

derprediction of the occurrence of weakwinds atWasco,

on the other hand, was mostly a wintertime effect, dis-

cussed further in the next section. The bidirectional

distribution (not shown) was represented in the model

for all seasons, as well as higher frequencies of the

occurrence of the westerly-sector winds in the spring

and summer seasons.

b. Validation of model mean-wind profiles

1) ANNUAL

The left column of Fig. 12 shows annually averaged

wind speed profiles (black lines) through 500m AGL

measured by the lidars at the three sites and those

generated by the HRRRmodel at several forecast hours

from 0 to 12h. The 1- to 12-h predicted profiles did not

differ much from each other, but the initial (red, hour 0)

profiles differed from the others by as much as 1ms21,

as might be expected because of imbalances in the ini-

tialized assimilation fields (Banta et al. 2018a); in gen-

eral the initial profile had the largest discrepancies. The

measured profile at Boardman up to 1 km (first 500m

shown here) indicated a broad LLJ structure that was

not evident in the model mean profiles.

Vertical profiles of the HRRR error statistics for 2016

are shown in the other columns of Fig. 12. The panels in

the second column of Fig. 12 show the annually averaged

profiles of RMSE for wind speed through the lowest

500m above the surface. The smallest RMSE values

of ;2m s21 occurred at the lowest points (approxi-

mately 20m AGL), increasing with height to 4m s21

above 500m. The remaining columns give the annually

averaged bias, unbiased RMSE (RMSEub), and MAE

of the model values versus the Doppler-lidar data, for

reference. Biases tended to be negative with magnitudes

less than 1ms21 below 500m, except for a positive bias

FIG. 10. Daily time–height cross sections of mean wind from (a) lidar and HRRR–NCEP forecast lead times (b) 1 and (c) 3 and wind

speed difference for forecast lead-time hours (d) 1 and (e) 3 at each lidar site for (left) a cold-pool event on 26 Feb 2016 and (right)

a diurnal-flow event on 28 Jun 2016.
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at Wasco, related to the overprediction of wintertime

wind speeds noted in the seasonal distributions there.

RMSEubwere 1.5–2ms21 smaller than the total RMSE,

reaching 2–2.5m s21 in the 200–500–m layer.

2) SEASONAL

Mean-wind and error profiles for the winter and sum-

mer seasons are shown in Figs. 13a and 13b, indicating the

contributions of those seasons to the annual patterns. The

underprediction of HRRR versus lidar-measured wind

speeds (low bias) was strongest in summer (Fig. 13b),

especially at Arlington and Boardman, as a result of the

underprediction of diurnal effects (Banta et al. 2018b,

2019, manuscript submitted to Mon. Wea. Rev.) and

westerly gap flows. The mean measured profiles in

summer show a mean LLJ structure not simulated

by HRRR.

Model-predicted winds for winter (Fig. 13a) and fall

(not shown) at Wasco were too strong below 400m by

up to 2m s21. The cold-season overprediction of wind

FIG. 11. Distributions of rotor-layer wind flow parameters for lead-time hour 3 at three sites

(top left) for all of 2016 for all wind speeds and for all wind directions, (top right) for all of 2016

for wind speeds divided into westerly and easterly wind directions, and (bottom) by season for

all wind speeds. Red color indicates 15-min lidar measurements at 98m; blue color indicates

hourly output from theHRRR–NCEPmodel at 100m extracted at the location of each lidar by

using a bilinear interpolation technique.
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speeds there, as noted in the previous section for the

modeled wintertime distributions, thus occurred through

a layer several hundred meters deep. A plausible expla-

nation for these erroneously strong model winds is that

the modeled depth of the wintertime cold pools was

often too shallow. Predicting the cold-air-pool top to

fall below the elevation of Wasco would expose that

site to the stronger winds above the stagnant cold-

pool layer, allowing higher momentum air from aloft

to penetrate down to near the surface at Wasco but

not at the two lower-elevation sites. The left panels of

Fig. 10 show an example of these conditions (from

0600 to 0000 UTC). If this scenario occurred often

enough, it would explain the winter peak in Wasco’s

modeled wind speed distribution (Fig. 11, third row

from bottom) at 5–6m s21 instead of at 3m s21 as

observed.

c. Validation by forecast lead time

Figure 14a shows the annually averaged model-

verification statistics for wind speed at 100m AGL

as a function of forecast lead time. RMSE values

were ;3ms21 for the first 2 h at this height, modestly

increasing with lead time to ;3.5, 3.1, and 3.1m s21 at

Wasco, Boardman, and Arlington, respectively. Thus,

annually averaged model forecast skill did not degrade

significantly with lead time, out to 15 h. This result is in

contrast to findings over the Gulf of Maine, also using

Doppler lidar and other instrumentation to validate

NCEP forecast models, including the HRRR-2012P

version (Banta et al. 2018a; Pichugina et al. 2017b;

Djalalova et al. 2016). These studies noted a distinct

degradation of forecast skill as forecast lead times in-

creased from 1 to 15 h.

The lack of degradation with forecast hour in the

present study may result from constraints on the flow

imposed by the complex topography. The flow is con-

strained by real topography in the atmosphere, but in

the HRRR runs it is constrained by smoothed model

topography, producing flow discrepancies that are more

controlled by terrain misrepresentation on average than

physics or numerical errors. Also, data assimilation may

be adversely affected by unrepresentativeness of the

measurement data being forced onto the model’s ter-

rain, contributing to errors in the early simulated fields.

Such assimilation issues along with the topographical

constraints could produce larger errors than would be

seen over simple topography for early lead times, but the

topographically controlled nature of the flows in both

cases would not allow the errors to grow without con-

straint at longer lead times.

Bias plots indicate low biases in the winds at the

lower two sites of less than 0.5m s21, the largest mag-

nitudes occurring at 5- and 6-h lead time. At Wasco,

however, the speeds were biased high by approxi-

mately 1m s21. The unbiased RMSE was similar in

value to the total RMSE for all hours, consistent with

the relatively small biases.

TABLE 7.Mean values of annual distributions of wind speed from lidarmeasurements andHRRR–NCEP 3-h forecast, and error of annual

power and annual energy production estimates at three sites.

Site Lidar Model

Diff between lidar

and model Normalized diff (%)

Wind speed at 100m

Wasco Wind speed (m s21) 7.16 6.75 20.41 5.73

Power (MW) 558.88 503.34 255.54 9.94

AEP (MW h) 4895.81 4409.23 2486.58 9.94

Arlington Wind speed (m s21) 6.85 5.84 21.01 14.74

Power (MW) 517.67 398.63 2119.04 23.00

AEP (MW h) 4534.78 3491.96 21042.82 23.00

Boardman Wind speed (m s21) 5.89 4.92 20.97 16.47

Power (MW) 441.29 327.13 2114.16 25.87

AEP (MW h) 3865.65 2865.67 2999.98 25.87

Wind speed at 80m

Wasco Wind speed (m s21) 6.91 6.56 20.35 5.07

Power (MW) 529.73 473.99 255.74 10.52

AEP (MW h) 4640.45 4152.18 2488.27 10.52

Arlington Wind speed (m s21) 6.70 5.74 20.96 14.33

Power (MW) 498.88 380.85 2118.03 23.66

AEP (MW h) 4370.21 3336.20 21034.01 23.66

Boardman Wind speed (m s21) 5.67 4.66 21.01 17.81

Power (MW) 412.22 296.5 2115.72 28.07

AEP (MW h) 3611.01 2597.37 21013.64 28.07
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Figure 15 shows these values for the winter and sum-

mer seasons, which show the strongest contrasts. The

most conspicuous results were the 2ms21 positive biases

atWasco—2 times the annual value—concentrated in the

winter (Fig. 15a) and autumn (not shown here) half year,

and the 1ms21 low biases at Arlington andBoardman in

summer (Fig. 15c) and spring (not shown), again about

2 times the annual value. The large cold-season posi-

tive biases at Wasco are consistent with the other

findings of wintertime winds being too strong in the

model at Wasco.

RMSE’s were smallest in winter, during which they

varied from site to site and did increase somewhat

with forecast lead time, from approximately 3.5 to

4m s21 at Wasco and from 2.4 to 3.3m s21 at Arlington

and Boardman. The correlations R2 were largest in

summer (0.85–0.9) and spring (similar, not shown), in-

dicating greater model skill in simulating warm-season

phenomena, and were smallest in autumn and winter

(0.55–0.65), when variations in wind speed resulting

from cold-season meteorological processes are of higher

amplitude.

d. Validation by time of day

Figure 14b shows the annually averaged model error

statistics as a function of hour of the day (midnight 5
0800 UTC, and noon 5 2000 UTC) for forecast hour 3,

although all forecast hours behaved similarly. The

positive bias at Wasco is evident during nighttime and

early morning hours of 0300–1600 UTC. Negative

biases at Arlington and Boardman were largest during

the early morning hours between midnight and noon

(0800 and 2000 UTC). The RMSEs were only weakly

dependent on time of day, and R2 correlation values

were somewhat smaller during the morning transition

(1500–1700 UTC).

Figures 15b and 15d show the time-of-day variations

of model error for the winter and summer seasons. The

high wintertime biases exceeding 1m s21 at Wasco oc-

curred mostly at night (0300–1500 UTC), accompanied

FIG. 12. Annually averaged profiles (black is lidar and colors are for HRRR–NCEP forecast

hours 0–12) of (left) wind speed, (left center)RMSE, (center) bias, (right center) bias-corrected

RMSE, and (right) MAE at (top) Wasco, (middle) Arlington, and (bottom) Boardman.
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by large values of RMSE sometimes exceeding 4m s21.

The summertime negative biases at Arlington and

Boardman had the largest magnitudes (at times greater

than 2m s21) at night, when diurnal westerly marine-

intrusion-type flows would be occurring at those

sites.

The diurnal behavior of model errors provides insight

into the nature of those discrepancies. In winter, smaller

daytime biases and other error values at Wasco may

indicate a tendency for the cold pools in the atmosphere

to become shallower during daylight hours, bringing

model predictions into better agreement. This suggests

FIG. 13. As in Fig. 12, but in the first 250m AGL for the (a) winter and (b) summer seasons.

FIG. 14. Validation metrics between measured and modeled wind speed at three sites for the annual period

January–December 2016 are shown as a function of (a) forecast hours and (b) time (UTC).
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that atmospheric processes leading to deeper cold pools

tended to happen more often at night and were not

matched by deeper predicted cold pools in the model. In

summer, the large negative nocturnal biases at night at

Arlington and Boardman are a consequence of model

problems in reproducing flows that respond to the

surface heating and cooling cycle. A study by Banta

et al. (2019, manuscript submitted to Mon. Wea. Rev.)

found that the models do predict the onset of these sea-

breeze-type flows with some success, but fail to sustain

the strong flows through the nighttime hours as ob-

served, especially at Arlington and Boardman.

5. Conclusions

Fifteen-minute wind profiles from Doppler lidars

deployed to three sites over a 71-km distance of similar

terrain for a year allowed us to evaluate annually aver-

aged wind characteristics at each site and differences in

those characteristics among the sites. Seasonally, winds

were weakest at all sites during winter.

Systematic differences were observed among the

sites. The highest, westernmost site (Wasco) had the

strongest winds, and the lowest, easternmost site

(Boardman), the weakest, with a 1m s21 difference

within the rotor layer, and 2m s21 above 200m AGL.

Winds were strongest at night at two of the three sites.

Histograms of wind speed showed significant differences

among the sites, two of the sites exhibiting distinct bi-

modal distributions.

Data from the hourly operational HRRR runs were

evaluated against the lidar data for the annual cycle. The

model underestimated the annual mean 100-m wind

speed, by 1ms21 at two of the sites.Modeled wind speed

distributions were also different from observed, under-

predicting the strong winds (.12ms21) at all sites and

weakwinds (,3ms21) atWasco.At a seasonal level, the

underprediction of strong winds was strongest during

summer and the underprediction of weak winds at

Wasco was strongest in winter. Information from model

error profiles, as well as inspection of data from indi-

vidual days, such as lidar time–height cross sections,

gives further insight into the model errors. Summertime

underpredictions of wind speeds were associated with

model errors in representing diurnal flows, and win-

tertime underestimates of weak winds at Wasco, which

were most evident for easterly flow, were associated

with errors in the depth of the persistent cold pools

often present during the cold season. Annual model

errors could thus be ascribed to seasonal errors, which

FIG. 15. As in Fig. 14, but for the (a),(b) winter and (c),(d) summer seasons.
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in turn were traced to specific types of flow event that

recurred during those seasons. These observations are

potentially valuable clues as to where the models need

improvement, here in the accuracy of simulated annual

mean winds.

Model errors varied from site to site. Each site gave a

different view as to where HRRR needs improvement.

If only one of the sites had been instrumented for model

evaluation, we would get a very different picture of the

nature of the model errors in this region and where

improvement was needed, depending on which of the

sites was chosen to be instrumented. This finding argues

for a high density of high-quality profile measurements

in field programs designed to address WE and NWP

improvement (Banta et al. 2013a), especially those in

complex terrain.
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FIG. A1. (a) Experiment-long (September 2015–March 2017) and (b) winter-period

(December 2015–February 2016) distributions of rotor-layer (50–150 m) wind (left) speed

and (right) direction at the Wasco and Arlington sites.
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APPENDIX

Additional Results

Distributions of rotor layer wind speed and direction

for the duration of the experiment and winter season are

shown in Fig. A1. Annual distributions of computed

power from measured and modeled wind speed at three

sites are shown in Fig. A2.
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